#ML concepts - Regularization, a primer
Regularization is a fundamental concept in Machine Learning (#ML) and is generally used with activation functions . It is the key technique that help with overfitting. Overfitting is when an algorithm or model ‘fits’ the training data too well - it seems to good to be true. Essentially overfitting is when a model being trained, learns the noise in the data instead of ignoring it. If we allow overfitting, then the network only uses (or is more heavily influenced) by a subset of the input (the larger peaks), and doesn’t factor in all the input. ...